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Study of Unsteady Fluid-Dynamic Forces Acting on a
Flexible Cylinder in a Concentric Annulus

W.-G. Sim* and Y. C. Cho**
(Received November 9, 1992)

The unsteady fluid-dynamic forces, generated by a flexural motion in axial (laminar) flow,
have been formulated based on a collocation finite-difference method for concentric configura­
tions, in connection with the flow-induced vibration problem. Based on the numericall method,
the governing equations of the unsteady flow, obtained from the appropriate Navier-Stokes and
continuity equations, redcuced to a system of algebraic equations leading to a block-trJidiagonal

. system. To obtain a solution of the system, the LU decomposition method is used considering
the factorization scheme. This numerical method is capable of taking fully into account unsteady
viscous effects and of predicting viscous forces rigorously rather than approximately, in contrast
with existing theories. In order to validate the numerical approach, semi-analytical approaches
have been developed for estimating the fluid-dynamic forces. The numerical results an;: compar­
ed to the analytical results and good agreement was found. The contribution of unsteady viscous
damping forces to the overall unsteady forces is significant for low values of the oscillatory
Reynolds number, expecially in very narrow annuli.

Key Words: Flow-Induced Vibration, Added Mass, Viscous Damping, Hydrodynamic Force,
Oscillatory Reynolds Number

1. Introduction

When a structure submerged in fluid oscillates,
the surrounding fluid must be displaced to accom­
modate the motion of the structure. There is
generally fluid-structure coupling and interaction.
Sometimes, fluid flow around the structure has
the potential to cause destructive vibrations.
Hence, the study of flow-induced vibrations is of
great interest for design. The interested reader is
referred to Chen's(l98I ) and Paidoussis's(l987)
reviews on flow-induced vibration and instabil­
ities. For the future purpose to predict the critical
flow velocity where system loses stability, the
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hydrodynamic forces associated with the motion
of the flexible cylinder are formulated in the
present paper.

The dynamics of a flexible cylinder subjected to
steady axial flow was first investigated by
Paidoussis, both theoretically (l966a) and experi­
mentally (1966b), for the system in unconfined
flow. The coupled-hydrodynamic forces acting on
the cylinder was formulated according to slender
body theory, as proposed by Lighthill(l960) for
inviscid fluid, and the viscous forces were for­
mulated by simple linerarized relationships, ear­
lier proposed by Taylor(l952). In general, the
added mass, which is associated with inertia
forces, has a significant effect on the natural
frequencies of system, while hydrodynamic stiff­
ness effects are responsible for the onset of fluid­
elastic instability by divergence. On the other
hand, negative flow-induced damping is respon­
sible for flutter.
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In a subsequent patper (Paidoussis, 1973), the

theory was extended to confined viscous flow

considering the effect of confinement of the fluid

flow by a duct, in which the formulation of the

viscous forces was adjusted appropriately and the

gravity and pressurization effects were taken into

account. The virtual mass of the confined fluid

flow associated with the lateral motions of the

system becomes large and the system loses stabil­

ity much earlier, but the fundamental behaviour is

not altered. The theory was validated by compari­

son with the experimental results (Paidoussis and

Pettigrew, 1979), where it was found that, with

increasing flow velocity, the cylinder is subject,

sequentially, to instabilities of increasing mode

number, confinement severely destabilizing the

system.

In most of the previous studies, the fluid­

dynamic forces acting on the oscillating cylinder

subjected to axial flow have been developed based

on uniform axial flow. Therefore, the effect of

laminar axial flow is still difficult to quantify

systematically. In this work, the fluid-dynamic

forces have been formulated from the Navier­

Stokes equations, accounting for unsteady viscous

flow effects much more fully than the semi-empir­

ical and approximate formulations utilized here­

tofore.

In an attempt to predict the fluid-dynamic

forces acting on a cylinder surrounded by a

viscous or an inviscid fluid in an eccentric an­

nulus, the spectral collocation method has first

been applied to system having "translational

motion" in quiescent fluid, where "translational

motion" is understood to mean motion transverse

to the flow, such that the sides of the two cylindri­

cal bodies remain parallel to each other (Sim and

Cho, 1993). In the present work, the spectral

collocation method is used to solve the three­

dimensional problem for a system having flexural

motion in a concentric annulus conveying viscous

axial now; in this case, the specitral collocation

method have been modified and used together

with the finite-difference method in a hybrid

scheme (Patanker, 1980). In the present paper,

this method is called the collocation-finite­

difference method. As a result, the fluid-dynamic

forces including the viscous effects can be evaluat­

ed rigorously rather than approximately, in con­

trast with existing theories.

The fluid-dynamic forces acting on a flexible

cylinder, as influenced by the axial steady flow

(laminar flow), are calculated by this collocation

finite-difference method. Considering the previ­

ous analytical theory (Paidoussis, et aI., 1990)

and utilizing the spectral collocation method, the

semi-analytical theory is developed for estimating

the unsteady fluid dynamic forces. The semi­

analytical method is less restricted to very narrow

annuli, as compared to the analytical solution.

The numerical results are discussed and compared

with the semi-analytical results in order to vali­

date the present numerical approach.

The inner cylinder is assumed to have a simple

flexural motion, as a clamped-clamped beam. In

order to simplify the problem and to get general

information, only the first of the modes of the

beam is considered for the oscillatory motion of

the flexible cylinder, This cylinder has length L
and radius a. The radius of outer cylinder· is b ;
hence the annular space between two cylinders is

H = b - a· The motions are assumed to be small.

2. Collocation Finite-Difference
Method

When a system of equations is obtained by the

collocation method with nth order of interpola­

tion functions for axial variation, the discretized­

system equations might become n times larger

than those of pure two-dimensional problem,

where the same number of collocation points are

selected for the radial and circumfen~ntialcoordi­

nates. As shown in the previous study (Sim and

Cho, 1993), the solutions given by the spectral

method converged fast. However, difficulties are

encountered in the three-dimensional problem

due to a relatively large full matris system, which

might produce singularity problems in the mathe­

matical procedure. In order to avoid this diffi­

culty, a finite difference method based on a hybrid

scheme is adapted for axial variations, which is

characterized by an artificial viscosity contribut­

ing to achieve convergence of the solution.
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where

Fig. 1 Typical grid-points cluster for the axial varia­
tion

sional problem. The governing differential equa­

tion is

( I )

(2)

Er11'

where U represents the steady flow velocity in the

axial direction and j denotes any flow field

parameter, which will be obtained. As mentioned

before, the axial flow velocity, U, can be obtained

from Navier-Stokes equations for the steady flow.

At this stage, our task is to obtain a solution for

j, which will be the unsteady fluid quantities in

the present analysis. For concentric configura­

tions, the steady flow velocity does not depend on

the axial coordinate consideration.

Using the hybrid scheme, the discretized

convective-diffusion equation can be written as

aE= ;e+IIO, - pi II,

aw=: +llpu, P2U II,
.:..JXw

ap=aE+aW,

i-- ~.rw ---r-~ ~}'e--

--0- b b-

where lip, qll represents p for the unwind scheme

(Rem>2) or q for the central difference scheme

(-2<Rem<2) and the subscripts E and W
present east and west wides with respect to the

central grid point P in the axial domain. In the

present analysis, the axial flow velocity is always

positive; there is no adverse pressure gradient in

a constant width annular space.

2.2 Formulation of the system equation for
unsteady viscous flow

The inner cylinder surrounded by incompress­

ible viscous fluid flow, has the periodic flexural

The hybrid scheme is related only to the axial

domain, while the collocation method is used for

the radial and circumferential domains. As a

result, the axial domain is subdivided into a

certain number of grid points, where spectral

expansions for the fluid parameters are defined.

The numerical details of the collocation method,

which remain the same as for the two-dimensional

flow discussed in the previous study (Sim and

Cho, 1993), have not been repeated in this paper.

However, an attempt has been made to clearly

point out and emphasize the details of the finite­

difference method for the present analysis.

Far upstream, the axial flow in fully developed

and its velocity can be calculated by author

(Mateescu, et aI., 1990) using the spectral method.

Details of this analysis are omitted here for brev­

ity. In order to formulate the unsteady viscous

problem, the results for steady viscous flow are

utilized.

2.1 Hybrid method formulation
In this section, the basic concepts needed in the

formulation of the hybrid scheme are presented.

The hybrid scheme was introduced by Spalding

(1972) under the name "High-lateral-flux

modification" for the finite difference method.

The significance of the hybrid scheme can be

understood by observing that it is identical to the

central-difference scheme for the mesh Reynolds

number range -2<Rem(=Uilx)/v)<2, and
outside this range with an upwind scheme. The

axial components of the diffusion terms and

convective terms related with the steady axial

flow velocity must be considered for the present

analysis. The addition these terms does not alter

the form of the discretized equations, when the

axial derivative terms are relatively small by the
assumption of small amplitude motion

Although the convection and diffusion terms

connected to the axial variation are the only new

terms in this section, its formulation is not very

straightforward. The convection term has an in­

separable connection with the diffusion term and,

therefore, the two terms need to be handled as one
unit.

To simplify matters, only the convection and

diffusion terms are considered for a one dimen-
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(5)

r-a
Z=I-2-ah' where ah=H=b-a. (8)

(7)

~(X)=-~-,,(X, t) ~ (X)=- e(X)e t..wt ) e r ~,
(awe eli2

R - [j2ha R _ wa2
e----, es---,

1) 1)

Considering the coordinated transformation
with the nondimensional parameters, the govern­
ing Eqs. (3) and (4), can be rewritten in the
computational domain (Z, 8) in the nondimen­
sional form

where e(X) denotes the nondimensional ampli­
tude of velocity or displacement of the moving
cylinder, [j represents the mean axial flow veloc­
ity and Res is called the oscillatory Reynolds
number. As shown in the above equations, the
nondimensional unsteady velocities and pressure
are defined in terms of C!i2= e!i2, where the sub­
script 1/2 stands for the corresponding local

value at X=I/2.
In order to transform the annular space (r, e)

into a rectangular computational domain (Z, 8=
e), a convenient coordinate transformation IS

used using the nondimensional coordinate Z
defined as:

expressed in terms of the eigenfunction IMx) of
the first normal mode for a clamped-clamped
beam

e/(x, t)=E(x)e,wl=aI1/!r(x)e,wl. (6)

The present problem is generalized by the fol­
lowing nondimensional parameters :.

motion in a concentric annulus. The vibrating
motion is assumed to be simple harmonic, with
circular frequency w. For the three-dimensional
problem with steady axial flow, the unsteady
governing equations are obtained by subtracting
the steady terms from the full Navier-Stokes equa­
tions. The linearized Navier-Stokes equations,
based on small amplitude motions of the cylinder,
and continuity equation in cylindrical coordi­

nates for the present analysis can be reduced

where u *, v * and UJ * denote the unsteady flow
velocities in the axial, radial and circumferential
directions, respectively. In the above equations,
the production terms between the unsteady com­
ponents are neglected for small amplitude motion,
and the circumferential variation of steady axial
flow is zero for concentric configurations.

Considering the no-slip comdition at the inter­
face between fluid and cylinder, the boundary
conditions on the fixed (r = b) and moving (r =

a) cylinders can be expressed as

u*(;r, b, e, t)=v*(;r, b, e, t)

= UJ*(x, b, e, t)=O,

u*(x, a, e, t)=O,

v*(x, a, e, t)=ev(x, tkose
_ ae/(x, t) Q- at cosO',

w*(x, a, e, t)= - ev(x, t)sine

ae/(x, t) . t.::lat SJnt'7,

where ev(x, t) represents the lateral velocity of
the moving inner cylinder and e/(x, t) denotes
the corresponding displacement which can be
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(9)

( 10)

cylinder, the following types of expansions can be
considered for the fluid-dynamic properties in the

three dimensional annular space

where the unknown coefficients Uj, ~, Vi and

Pj can be decomposed into real and imaginary
components.

Taking account of the expaasion forms shown

in the above equations, the second of the three
Navier-Stokes Eq. (9) and the continuity Eq. (10)

can be expressed based on the hybrid scheme as

(II)

m

il = L: UAX) TAZkos e,
j=O

m
U= L: Vi(X) 7}(Zkose,

j=O

w=~ ~(X)Tj(Z)sine,
j=O •

m-2

P= L: PAX) Tj(Zkose,
j=O

h
2

iFiiJ { - au 1J+4/2 aX2- D w-2 aeJ ,

Res h2 - + Res h3.L+ Re ll.-u- au
t 4 v t 2 az 8 / ax

[
a2u au a2u

= az2-!l5 az +D ae2

h
2

a
2
u { - aW}J+ 4/2 ax2 - D v +2 ae '

au rn - aw h ail °az -vD v -D ae -TT ax = ,

where D={h/[2+ h(l- Z)]}2.
In order to get the system equations based on

the collocation finite difference method, the non­

dimensional parameters can be expressed in terms
of Chebyshev polynomials and Fourier expan­

sions. Also, the unknown coefficients are depen­

dent on the axial coordinate. Using the spectral
expansion for the flexural motion of the inner

(

~[Tj'(Z) -!l5T;(Z) - 2DTj (Z)

j~ -t
R

:
S

h
2
TAZ)-( 7Y 2(LlX~Xw) TAZ)

- 2 Vi Tj(Z) - tPj R{s h!l5Tj(Z)

+~(~[2(LlXe+~Xw)LlXe(7Y ~e 7LlXe£LlX)O, IIIJTj(Z»)E

+ j~( ~[2(LlXe+~Xw)Llxj 7Y+ ~e 7LlXe£LlX)2, IIIJ TAZ) L,
m , m( hi)
~/ Vi[Tj(Z)-!l5Tj(Z)] -!l5~Tj(Z»p-~o Uj / 2(LlXe+LlXw) Tj(Z) E

+j~o( Uj 72(LlXe~LlXw) TAZ»)w =0,

(12)

(13)

where LlQ and R are the vectors for the unknown
coefficients and the boundary conditions, respec­
tively. The matrix 5 represents the block­

tridiagonal matrix expressed as

In the present analysis, a system of linear alge­

braic equations can be obtained by imposing the
above equations on the finite number of colloca­

tions points in the computational domain (Z, 8),

and applying the equations to a finite number of
grid points distributed in the axial domain. As a
result, the system of equations can be expressed,

as a block-tridiagonal system, in the general form

while the other two Navier-Stokes equations are
not given here for brevity. In the above equations,

the prime and the double prime denote, respec­

tively, the first and second derivatives with respect

to the coordinates concerned; for example, [J' =

aD/ az and T" = £!2 T / aZ2. Also, the boundary
conditions may be written as

~ Uo(X) Tj ( I) =0,
j=O

m
L: Uj(X) TA -1)=0,
j=O

~ Vi(X) Tj( I) = er(X),
j=O

m
~ Vi(X) TA -1)=0,
j=O

f ~(X)7}(I)=- er(X),
j=O

SLlQ=R,

(14)

(15)
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HWi 0 0 0 0 0 0
E2 g ~ 0 0 0 0 0
0 E3 Fa W3 0 0 0 0
0 0 0 0 0

5=
0 0 0 0 0 ' (16)

0 0 0 0 E t-2 Pt-2 Wt-2 0
0 0 0 0 0 E t- I Pt- I Wt- 1

0 0 0 0 0 0 E t Pt

where Ei, Pi and w.. are matrices of order 2 X

[( m --I) +3 X (m + I)J, concerned with the ith
grid point, and the subscript t denotes the number
of total grid points considered. Each row of the
matrix is concerned with three grid points based
on the finite-difference method, and the sub­
matrices are related to the corresponding col­
location points based on the spectral method.

When the smooth variations of fluid quantities
along the axial direction are expected, it is conve­
nient to have uniformly distributed grid points,
L1Xe =L1Xw ' In the present analysis with the flex­
ible cylinder, which has small amplitude oscilla­
tion, it is possible to use the uniform mesh space.
With this step size, the submatrix can be expressed
as

where the stresses are expressed as

(20)

F/(x, t)=PJra2aiael/2{ffi[F(x)]

+l~[F(x)]}e,wt,

The analysis has now been suffciently progressed
to evaluate the unsteady lateral forces.

The resulting fluid-dynamic fon;es, acting on
the cylinder in the direction of oscillatory motion
can be calculated by the following equation.

F/(x, t)= ;:2"a( rrrlr=acose- rr9lr=asine

+ rrx!r=a~ )de, (18)

The integral effect of the stress component rw
acting in x-direction on a surface whose norml
vector points in r-direction, on the fluid-dynamic
forces is null.

Using the same procedure as in the previous
paper (Sim and Cho, 1993) for visc:ous fluid, the
resulting forces can be expressed as

(17)

E 1=£2=£3='''=£t,
P1=P2=P3=···=Pt,
W1= W2= W3="'= Wt·

Therefore, the storage required for the system
equations can be reduced.

To obtain the numerical solution, the LU
decomposition method is utilized, as mentioned
before. The LU decomposition method, which is
one of the direct methods, gives the solution in a
finite and predeterminable number of operations.
This method has proven to be a very useful and
efficient tool for solving the block-tridiagonal
system of equations.

2.3 Stress componenents and formulation of
fluid-dynamic forces

In order to formulate the fluid-dynamic forces
acting on the moving cylinder, the stress compo­
nents including the unsteady pressure, generated
by the flexural motion, are considered. By circum­
ferential line integration of the stress components,

the unsteady fluid-dynamic forces are obtained.

where the nondimensional fluid-dynamic force,
F(x), in complex form, is

F(x)= - ~{PAx)+ ~es [Vjt(x)- Wjt(x)

+ Wj(x)- Vj(x)} TAl), (21)

in which

8 m-l

V/(x)=-h ~ qVq{x), j+q=odd,
Cj q=j+l

8 m-l
Wjt(x)=-h ~ qWq(x), j+ q=odd,

CJ q=j+l

(22)

where co=2 and Cj= I(j >0). The real and imagi­
nary components of the resulting forces, shown in
the above equation are in-phase and in quadra­
ture with displacement, respectively.

2.3 Numerical results
In order to show the rate of convergence of the
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Fig. 2 Variation of (a) the real and (b) the imagi­
nary components of the nondimensional
fluid-dynamic forces versus the mesh space
LlX for hia= 1.05, Re=300 and Res = 5,000
(m=8) at various axial positions: ., X =xl
L=0.25; 0, X=0.5; 6, X=0.75

20

~(F) i~

Res=5,OOO for a mesh spacing LlX=O.1. It is
found that the real component of fluid dynamic
forces is only slightly dependent on the Reynolds
number; however, the imaginary one is strongly
influenced by the Reynolds number. As shown in

the figure, it is obvious that the real components

numerical solution, the calculations have been
conducted for various mesh spacings defined for

the finite-difference method. For self-excited flex­

ural motion, it is of interest to estimate the fluid
dynamic forces acting on a slender cylinder. In

the present work, the length-to-radius ratio

remains constant, 1= LIa= 15. Taking account
of the nondimensional governing Eqs. (9) and
(10), the nondimensional fluid variables are

influenced by the Reynolds number Re, as well as
by the oscillatory Reynolds number Res.

The variation of the calculated fluid dynamic

forces with various mesh spacings between two

grid points is shown for the case of bI a = 1.05,

Re = 300 and Res=5,000 in Fig. 2 (the results are

obtained with m=8). The results at certain grid

points (X =xlL=0.25, 0.5 and 0.75) are present­
ed. As the spacing is decreased, the results appear
to converge to a certain value, and then abruptly

diverge. The character of these results might be
caused by a truncation error for coarse mesh

spacings and by a round-off error for fine mesh

spacings. Considering these results, the suitable
mesh spacing for the given problem can be select­
ed. For the present case, the optimized spacing

should be LlX =0.1.
Typical results of the nondimensional ampli­

tude of the unsteady velocities across the annular
space are shown in Fig. 3(a, b, c) for the case of

bla= 1.25, Re=626 and Res=5,000 with m=8
at X =0.3, 0.5 and 0.7. The distribution of the
real parts of complex-velocity in the circumferen­

tial directien has a parabolic shape of low value

of Res, which is not shown here for brevity. By
inspection of Eqs. (20) and (21), the nondimen­

sional pressure 15=p*/(pa2 o}aeliZe Lwt
) has al­

most the same order of magnitude as the forces;
however, it is found that the skin-friction force

become larger as the oscillatory Reynolds number
is increased. The interested reader is referred to
the pressure distribution along the circumferential

direction, shown in the previous work (Sim and
Cho, 1993) for translation motion without axial
steady flow.

The influene of the Reynolds number (Re=O,
626 and 1,256) on the forces along the axial

direction is presented in Fig. 4 for bla= 1.25 and
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(a) (b) (e)

Fig. 3 The nondimensional amplitude distribution of the unsteady flow velocities for bla= I.25,
Re=626 and Res = 5,000 across the annular space; (a) the circumferential, (b) radial and
(c) axial components. 0, real part; ., imaginary part

are proportional to the acceleration of the moving

cylinder, mainly influenced by the inertia force.

The damping forces, related with the imaginary

component, might be caused by the combined

effects of the unsteady viscous drag and the eq ui v-

alent Coriolis force. For flexural motion In the

first mode, the viscous drag and the Coriolis

terms are symmetric and anti symmetric with re­

spect to the middle (X = 1/2), respectively-since,

the former is in phase with displacement of the

0.'0.2
oIr'==-~-~-~--~-~---="""=I!l
~-O.2 0.00.6 0.8

X
0.'02

o.oa:==-,--~-~--~-~--I"="'~
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y

a.' 10 12
(b)

(bl

Fig. 4 Influence of axial flow velocity on (a) the real
and (b) the imaginary components of the
nondimensional fluid-dynamic forces for bl a

=1.25, LIa = I5, and Res = 5,000 with 11X =
0.1: 0, Re'=O; 6, Re=626; 0, Re=I,256

Fig. 5 Influence of the oscillatory Reynolds number
on (a) the real and (b) the imaginary compo­
nents of the nondimensional fluid-dynamic
forces for bla = 1.25, LIa= 15. and Re =626
with .:1X=O.I: 0, Res=500; 6, Res=5,
000; 0, Res= 10,000
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cylinder, while the other is proportional to the
first derivative of the displacement. With increas­
ing the Reynolds number (i. e., increasing axial
flow velocity), the equivalent Coriolis term
becomes larger.

Calculations have been conducted to investi­
gate the effect of the oscillatory Reynolds number
(Res=500, 5,000 and 10,000) for bla= 1.25, Re
=626 with dX=O.1 and m=6. The results are
show in Fig. 5. For the low value of Res = 500,
the effect on the real part of force (including the
viscous effect) is relatively large. The ratio of the
imaginary component to the real one becomes
smaller with increasing oscillatory Reynolds num­
ber ; its effect on the forces is less than 15% in the
case of bla= 1.25 with Res=5,000 or 10,000.
However, the viscous effect on the damping force
is important for very narrow annular configura­
tions.

3. Approximate Semi-Analytical
Method

The numerical results obtained in the previous
section will be compared to the approximate
results obtained in this section. This is one of the
necessary procedures to validate the newly devel­
oped numerical method, since there are no other
previous results to be used for comparison. For
this purpose, the approximate analytical method
(Paidoussis, et aI., 1990) will be modified to
obtain an improved unsteady viscous flow solu­
tion.

The fluid-dynamic forces are formulated, first
assuming the case of an unsteady potential (invis­
cid) flow, and then considering also the main
effects of fluid viscosity. The unsteady inviscid
force will be obtained by the numerical approach
based on the spectral method with the aid of the
separation of variables method, which is more
rigorous than the previous analytical method;
however, the viscous effects are approximated
analytically by the same principles as in the
reference (Paidoussis, et aI., 1990). This is the
reason why the method is called semi-analytical.
The present semi-analytical results are also
compared to ones obtained by he previous analyt-

ical method especially for narrow annular config­
urations.

Based on the assumption of small amplitude
oscillations of the flexible centrebody in an an­
nulus, the two flow fields, potential and viscous,
are considered to simplify the approach of this
problem. The unsteady viscous forces are for­
mulated by considering the mean circumferential
flow velocity obtained by potential flow theory.
The direction of the mean flow velocity, which is
considered to oscillated, is then determined, and
the unsteady viscous pressure drop along the
circumferential direction and the shear stress
acting on the wall are evaluated.

The axial steady flow is assumed to be a fully
developed laminar flow characterized by the
mean flow velocity G, static pressure P.. and the
fluid density p, which is considered constant.

3.1 Derivation of the inviscid force
With no separation in the annular flow, the

inviscid forces are derived by potential flow the­
ory. For incompressible fluid, the unsteady gov­
erning equation is expressed in terms of the
unsteady velocity potential ¢, in the form of the
Laplace equation:

subjecto to the boundary conditions

where the radial displacement, er(X, e, t), is
expressed in terms of the eigenfunctions, ¥k, of the
corresponding beam-see the reference (Paidoussis,
et aI., 1990).

Using the separation of variables method, the
velocity potential ¢(x, y, e, t) may be written in
the form

(25)

where the reduced potentials ¢k(X, y) can be
expressed as
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with the boundary conditions

(31)

(33)

ah -
A a= -T[ - CW+ U(1kEk]'

ah -
A b= -T[WJ(1k+ UEk],

ah -
B a = -T[cw- U(1kEk],

ah- ]B a = -T[ - CW(1k + UEk ,

where (1k = <CoshEkL - cosEkL)/(sinhEkL -sin
EkL), the EkL being the corresponding
eigenvalues of a damped-clamped b4~am.

Imposing the governing Eq. (30) at a finite
number (m - I) of collocation points, equally
distributed in the radial direction and! considering
the above boundary condition, the solution of the
red uced potential ¢ k can be completely the deter­
mined from algebraic equation obtained. Thus,
the reduced potential can be evaluated on the
surface of the moving cylinder (Z = 1) :

and the boundary conditions are reduced to

where the two sets of solutions, s = 1 and 2,
arising from + E~ and - 13;' in the above equa­
tions can each be associated with 'either Vrlk or
VrZk, defined for the trigonometric and hyperbolic
components of the eigenfunctions, respectively.

Considering the + E~ case for the trigonometric
components, the boundary conditions can be
rewritten

through which the constants, A a , and A b , may be
determined. Proceeding similarly, the constants,
B a and B b associated with - Ef., may also be
determined. Hence, the unknown constants are
found to be

(29)

(26)

_ Z

¢k(X, Z)= ~fSk(X)Fsk(Z)
s=l

= ¢lk(X, Z) + ¢Zk(X, Z),

where

¢lk(X, Z)=[AacosEkx +AbsinEkx]~ <D1kj TAZ),
J

¢Zk(X, Z) = [BacoshEkx +BbsinhEkx]

~ <DZkj 1j(Z),
j

in terms of the eigenvalues, EkL, of the eigenfunc­
tions and the expansion forms of Chebyshev
polynomials, TAZ). In the above equations, the
subscripts 1 and 2, stand for the trigonometric
and hyperbolic terms, respectively.

Substituting the reduced-motion potentials into
the governing equation leads to

~o<Dikj Tj'(Z) - m <DikjT(Z) - [ D ± ( a;Ekn
<D.kj TAZ)=O, (30)

in terms of new coordinate Z=I-2(r-a)/H.
Taking into account the coordinate transforma­

tion, the reduced potentials, ¢k(X, Z), i.e.

aZhz ;i¢k + ;i¢k _ma¢k -D.:i. =0
4 aT azr az 'Ph '

(27)

~I -0az 2=-1- ,

~~t=l = - a2h [CWVrk(X) + UVr~(x)], (28)

where the prime denotes differentiation with re­
spect to x, the nondimensional annular space is

expressed as h=(b-a)/a=H/a. As compared
to the previous analysis (Paidoussis, et aI., 1990),
it is obvious that this potential theory is not
restricted to very narrow annuli. Considering the
normal mode expansion for the motion of cylin­
der, which can be separated into trigonometric
and hyperbolic components, it is more convenient

to define the reduced-motion potentials, ilk and

¢Zk, as follows:

subject to the boundray conditions
Z

¢k(X, I) = - aL: GSk[CWVrsk(X)I + UVrSk(X)],
5=1

(35)

where
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(36) viscous effect is expressed as

(37)

(ZIT
Fp(x, t)=-)o a(P-Poo)lr:acosede

=-pJ[a2e,wt~ak(-u/Pk2+tOJPkl
k

(42)

(41)

(40)

I 1r
=6sin{) = IV = H wdr

r=a

= ~ 2
afj [t/Sk WSk ]sinee,wt,

where

and Re = PUDH1f.L is the Reynolds number based

on the hydraulic diameter DH =2ha. In the above

equation, t; is a coordinated directed by the total

mean flow velocity, which fluctuates circumfer­

entially through a small angle () calculated as

where Pm denotes mean pressure, the nondimen­

sional friction coefficient Cf is defined by

(38)

2 2

Pk2 = ~ GskJ/!Sk' Pkl=2U~ GSkI/J'S",
5=1 5=1
_ 2

PkO = [pm~ (- I )SGSk I/JSk'
5=1

where

Substituting the solution of the unsteady veloc­

ity potential into the unsteady Bernoulli equation,

P _ I -z I I )12 a¢ . h--Poo- 2 pU -2PV(¢s+¢ -P7ft' Wit

the aid of d¢sl dr = U and integrating around the

circumference of the inner cylinder, the unsteady

inviscid force is found to be

where

- 12 1-
r=pU2Re =cf2PU2.

Now, the unsteady lateral viscous force F VI can

be evaluated

(43)re = rsin{),

where

and

WSk = toil 2_h(2Z -I) q)skJiZ)dZ.

The dimensional shear stress on the cylinder in

the circumferential direction is found to be

By inspection of the above equation, it is clear

that the lateral viscous forces are dependent on

the Reynolds number (cj=241 Re) and the geom­

etry of the system: The effect of the pressure

perturbation is 21 h times that of the shear stress.

and simlarly, for the nondimessional velocity

components with respect to the mean axial flow

velocity, 'if, 1) and Ii', where the components, if",

liv, iuv' and PD' associated with viscous effects are
considered to depend only slightly on e and t.

It was found in the simplified unsteady viscous

model that, for laminar flow, the gradient of the

pressure perturbation Pv due to the unsteady

The inviscid forces are expressed as the general

form: The added mass X is dependent only on the

cross sectional geometry for slender body

(Paidoussis, 1973). However, in the present the­

ory being applicable to cylinders of small length­

to-radius ratio, the added mass is dependent on

the eigenfunctions of the beam as well as the

geometry, as described in the above equation.

Therefore, GSk are equivalent added mass coeffi­

cients in this analysis.

3.2 Determination of the viscous forces
As shown in the simplified unsteady viscous

model (Paidoussis, et aI., 1990), perturbation

terms due to unsteady viscous effects are super­

imposed on the unsteady terms obtained above;

thus, the nondimensional pressure perturbation

with respect to pU2 is defined by

Jj (x, r, e, n=pv(x, r, e, tl+ pp(x, r, e, t),
(39)
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narrow-annul us simplification of the previous

theory applies best. The added mass coefficients

obtained by slender body theory (Paldoussis,

1973), x=W+h)2+1]/W+h)2--I], are also
presented to compare with the results (X is in­

dependent on the eigenfunctions as compared to
the present results).

Before comparing the present approximate

results to the numerical results, the nondimen­

sional fluid-dynamic forces, ffi(F) and ~(F),

obtained by the present approximate method are

compared with those of the previous approximat­

ed analytical method for 1=15 and Res=5,
OOO( m =6). In Fig. 6, the result is ,;alculated for

for b/a= l.l and Re =400. It is found that the
discrepancy is very small for the narrower case,

(b)

Fig. 6 Comparison of (a) the real and (b) the imagi­
nary components of the nondimensional
fluid-dynamic forces for b/a= 1.1, L/a= 15,
Re=400 and Res =5,OOO, obtained by two
methods: - • -, the present semi­
analytical method; -, the pn~vious analyti­
cal method

considering the numerator, 2+h.
Considering the inviscid and lateral viscous

forces without taking into account the steady
longitudinal force, the fluid-dynamic forces are

expressed in comples form as

F=Fp+Fvl

= p7fa2o}al ¥rl(L/2)e,wt[ffi(F+ l~(F)], (46)

where al ¥r1(L/2)e,wt denotes the lateral displace­

ment of the moving cylinder at x = L/2

3.3 Comparison with previous solution
The equivalent added mass coefficients defined

in Eq. (36), GSk can be predicted by the present

theory and then will be compared with those
obtained by the previous theory (Paidoussis, et

aI., 1990) for situations where both should be

applicable. The equivalent added mass coeffi­
cients obtained by the present inviscid flow theory

are presented for slender cylinders (l = L/a=20)

with rad.ius ratios, b/a=1.05 and I.I(m=6). As
shown in Table I, it is seen that better agreement

is for a narrower annulus (b/a=1.05), where the

Table 1 Comparison of equivalent added mass co­
efficients for concentrically narrow annular
flow;I=Lla=20, (a) b/a=1.05 and (b)

b/a= 1.1

Previous Present ReI. Difff(%)
Results( I) Results(2) [(2)-(1)]/(2)

k GI • G. GI • G. LlGI • LlG.

I 18.49 20.68 19.38 21.79 4.5 5:1

2 16.92 23.08 17.66 24.47 4.2 5.2

3 14.99 27.97 15.57 30.05 3.7 6.9

X=20.51
(a)

Previous Present ReI. Difff(%)
Results(l ) Results(2) [(2)- (1)]/(2)

k GI • G. GI • G. Ik 2k

I 9.04 10.11 9.92 11.21 8.8 9.9

2 8.27 11.28 9.00 12.67 8.1 11.0

3 7.34 13.66 7.90 15.76 7.2 13.3

x= 10.52
(b)

000

C! 00

025

(a)

050 x

x

075

C I':.

1.00
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where the both theories are quite applicable.

Hence, the present approximate results can be
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